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Depinning transition and thermal fluctuations in the random-field Ising model

L. Roters* A. Hucht] S. Libeck! U. Nowak® and K. D. Usadél
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Univeréaisburg, 47048 Duisburg, Germany
(Received 20 May 1999

We analyze the depinning transition of a driven interface in the three-dimengg&Datandom field Ising
model (RFIM) with quenched disorder by means of Monte Carlo simulations. The interface initially built into
the system is perpendicular to thel1] direction of a simple cubic lattice. We introduce an algorithm which
is capable of simulating such an interface independent of the considered dimension and time scale. This
algorithm is applied to the 3D RFIM to study both the depinning transition and the influence of thermal
fluctuations on this transition. It turns out that in the RFIM characteristics of the depinning transition depend
crucially on the existence of overhangs. Our analysis yields critical exponents of the interface velocity, the
correlation length, and the thermal rounding of the transition. We find numerical evidence for a scaling relation
for these exponents and the dimenstbof the system[S1063-651X99)03011-1

PACS numbgs): 68.35.Rh, 75.10.Hk, 75.40.Mg

[. INTRODUCTION of motion for sliding charge density waves predicts its char-
acteristic velocity to be a power law of temperature at the
Driven interfaces in systems with quenched disorder discritical threshold. This scaling ansatz has been shown to be a
play with increasing driving force a transition from a phasevalid description for the depinning of a domain wall in the
where no interface motion takes place to a phase with a finit@D random field Ising modeéRFIM) with quenched disorder
interface velocity. This so-called depinning transition is[10].
caused by a competition of driving force and quenched dis- The outline of our paper is as follows. Section Il describes
order. While the driving force tends to move the interface,the RFIM and reflects properties pt11] interfaces in this
the motion is hindered by the disordeee, e.g., Ref1]). model. In Sec. lll we discuss the depinning transition from a
Depinning transitions are found in a large variety of microscopic point of view, analyzing the mechanisms of in-
physical problems, such as fluid invasion in porous mediderface motion near the depinning transition. Also, we deter-
[2], depinning of charge density wavg3,4] or field-driven ~ mine numerically the exponents of the interface velocity and
motion of domain walls in ferromagne{&]. In magnetic  of the correlation length, allowing an estimation of the uni-
systems a domain wall separates regions of different spiMersality class of the 3D RFIM. In Sec. IV we analyze the
orientations. With the assumption that the corresponding ininfluence of temperature on the depinning transition. By as-
terface shows properties of an elastic membrane, it has be@yming the interface velocity to be a generalized homog-
argued[5] that the depinning of the interface can be de-enous function, our analysis is based on applying standard
scribed by an Edwards-Wilkinson equatiofs] with concepts of critical equilibrium phenomena. The ansatz al-
quenched disorder. While the interface motion in a systenfows the characterization of the thermal rounding of the de-
with quenched disorder near the critical threshold is theoretipinning transition by a critical exponeat We determines
cally often investigated in the absence of thermal fluctuafor the depinning transition in the 3D RFIM and find numeri-
tions, these fluctuations affect the experimental study of th&al evidence for a scaling relation among certain critical ex-
depinning transitiof7—9]. The crucial point is that energy ponents characterizing this transition. This scaling relation
barriers which are responsible for a trapping of the interfac&!so holds in the 2D RFIM analyzed previougio].
in a metastable state at zero temperature can always be over-

come due to thermal fluctuations. For driving fields far be- II. INTERFACES IN THE RFIM
low the transition field this yields a thermally activated creep ) ) ) )
motion (see Ref[9], and references thergirThis behavior We investigate the 3D RFIM with quenched disorder on a

Changes approaching the transition point' where finite temSlmple cubic lattice. The Hamiltonian of the system is given
peratures cause a rounded depinning transitfon experi- by
mental evidence see, for instance, Fig. 29f). To describe ]
the dependence of the interface velocity on driving force and __> - _ .
temperature near the transition point, a scaling ansatz has " 2 @2” S5 HZ S Z s @)
been proposef#]. This ansatz which is based on an equation
where the first sum is restricted to nearest neighbdrde-
notes the driving field antl; quenched random fields which

*Electronic address: lars@thp.uni-duisburg.de are uniformly distributed within an intervgl—A,A]. Both
"Electronic address: fred@thp.uni-duisburg.de fields as well as the temperatufeare given in units of the
*Electronic address: sven@thp.uni-duisburg.de coupling constand. We carry out Monte Carlo simulations
8Electronic address: uli@thp.uni-duisburg.de with single-spin-flip dynamics and we use transition prob-
IElectronic address: usadel@thp.uni-duisburg.de abilities p(S——S;,T), whereT denotes the temperature,
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FIG. 1. Periodic images of a moving interfacedr 2. Antipe- Al]

riodic boundary conditions are applied. Black areas correspond to

S <0 and white areas 16 >0 FIG. 2. Dependence of magnetization reversal processes on sys-

tem parameters in the RFIM d@=0. The dimension enters only

. ) through the numbez of nearest neighbors. The bold line indicates
according to a heat'bath'Algor'th(Bee e.g., Ref.11], an_d. the dependence of the critical fieltl, on the strength of the disor-
references therejn At zero temperature these transition gera. ForA<J the critical field equala, while for A>J the bold
probabilities reduce to line is only a sketch. The dashed lines indicate the regions where
overhangs and island growth appear.

1:6H<O,
p(S——S,00=14 1/2:6H=0, ) sign has to be chosen in an appropriate manner. Our imple-
' _ mentation will work as long as the different parts of the
0:6H>0, interface do not interact. An interaction takes place if the

] ) interface widthw~L¥¢ is of the same magnitude as the typi-
where SH=H(-S)—-H(S). We investigate three- c3|distancea between two neighboring parts of the interface.
dimensional cubic systems of linear extension flom12to  Thjs distance is proportional to the linear extension of the
L=162. systemacxL independent of the considered dimension. Our
~Aninitially flat interface is built into the system separat- jmplementation is therefore applicable to situations whiere
ing regions of up and down spins. The applied figldrives <1 pespite this restriction antiperiodic boundary conditions
the interface. Within the Monte Carlo simulation spins adja-payve the advantages that they can be applied to any dimen-
cent to the interface flip causing a movement of the interfacesjon and generalized to other orientations of the interface.
Also, nucleation may occur, i.e., a spin initially parallel to all They are a natural choice for interfaces, because the moving
of its neighbors may turn. Since we are interested in thenterface can be investigated without any time limit. This is
scaling behavior of the interface motion in the vicinity of the especially an advantage close to the depinning transition,
depinning transition, it is essential that within the observayyhere the critical slowing down effect causes large relax-
tion time nucleation does not occur. The minimum energyation times[13].
needed for isolated spin flips is 2I-H—A). Aslong as |n our implementation the moving interface visits the
this quantity is large as compared to temperature, the timgame spatial position after finite time intervals. Therefore,
scales on which nucleation and interface motion occur arque have to update the random fields in a spatial area visited
separated, and within the observation time no nucleatioy the interface before it moves again into this area. This is
takes placg10]. In particular, there is no need to suppresseasily done by drawing new random fields at sites away from
artificially nucleation or isolated spin flips during the simu- the interface. Thus, the average over samples necessary in
lation. Monte Carlo simulations is obtained by averaging over large

The analysis of interface motion on simple cubic latticestimes. However, if the interface is trapped a usual sample
considers usually100] interfaces. However, investigating average has to be done.

[ 100Q]-interfaces in the limit of vanishing disorder means that
the interface motion is restricted to driving fieltty/J>z
—2 (see Ref[12]). To avoid this, we considgrl11] inter-
faces which move in the absence of disorder at arbitrarily In the RFIM with an interface initially built into the sys-
small driving fields increasing the separation of time scalesem, there are in general two magnetization reversal pro-
for interface motion and nucleation even furth&]. cesses: interface motion and nucleation. Without thermal
We have found that the most convenient way to imple-fluctuations the second process does not occur as long as
ment[111] interfaces in the numerics is the introduction of (H+ A)/J does not exceed the numbeiof nearest neigh-
antiperiodic boundary conditions. This implementation is il-bors. The corresponding threshold is shown in Figu@per
lustrated in Fig. 1. For simplicity, periodic images of a snap-broken curve Above this threshold nucleation processes
shot of an interface id=2 are shown. As can be seen from take place and interfere with the interface motion.
Fig. 1, the orientations of up and down are exchanged when In the following we are interested in the influence of over-
passing the boundaries of the system. Of course, the eXxtangs on the value of the critical field(A) at which the
change of up and down also affects the driving field whosdransition takes place. Close to the depinning transition, there

Ill. ZERO TEMPERATURE
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FIG. 3. Part of a diagonal interface th=2. Different orienta- :1; : .
tions of the spinsS; are denoted by black circlggavored by the ~ 50 ; f
driving field) and white circles, respectively. To cause a spin flip at ’ | o
the A, B sites, different driving fields are necessésge text :csB =
00 oo /Do DP; ‘
are two important kinds of spin flipsee Fig. 3. All spins of "-4.0 -2.0 00 20 4.0
type A with (H-H) L
FIG. 5. Scaling plot of the distangd(t—)) traveled by the
> SaS;=0 willflipif H=Hg=A, (3) interface before pinning occurs as a function of the driving fléld

6] according to Eq.(6). The data collapse yields i+ 1.31+0.07,
_ _ _ _ y/v=0.98+0.4, andH .= (1.371+0.003)J.
while the first spin of typeB with
flip if H<A. But because of the existence of overhangs, a
> SeSj=—2 canflipif H=H_,=2J—-A. (4 se_cond growth mechqnism is |_oossible to the in_terface: If a
) spin of typeA cannot flip due to its large random fietgl, an
overhang created elsewhere can cause an avalanche by which
i - . additional neighbors of are flipped. Thus the interface can
respectively. If the strength of disordaris smaller than the pe kept moving. Contrary to the reginde<J, the interface
exchange energy, then it follows thatHo<<H_,. The criti-  motion now is based on the existence of overhangs. Note that
cal field at which the transition takes place is given byour considerations do not depend on the dimensiaf the
H.(A<J)=A. Hence, no overhangs occur in the vicinity of system, because Eq®) and(4) are independent af.
the transition point. Taking into account the transition prob- ~ \we start examining the regima>J in the 3D RFIM
abilities given by Eq.(2), this value of the critical field nymerically by investigating the depinning transition from
means that the interface velocity depends neither on the drivgejow. We analyze the disorder-averaged distafiét
hangs occurlff <H_,). In particular, in the absence of over- occuyrs. This quantity is closely related to the total volume
hangs the interface velocity observed in a disordered systeffyaded by a growing domain which was analyzed in Refs.
coincides with that of a nondisordered systetn=0). Fig-  [14,15. However, while in Refs[14,15 the driving force is
ure 4 and its inset show numerical data which confirm thisncreased step by step to allow for relaxation processes in
scenario for the 3D RFIM within the error bars. ~ between, we focus our attention to driving fields which re-
Next we |nVeSt|gate the deplnnlng transition occurring |nmain unchanged during the interface motion.
the RFIM for A>J. In this case the transition takes place at Below the depinning transitiofh(t—o)) is finite. Ap-
a certain fieldH <A as can be understood from the follow- proaching the transition point with increasing driving field,
ing consideration: FoH,<<H_,, not all spins of typeA can  the distance traveled before pinning occurs increases and fi-
nally diverges at the transition point. We assume that in the

Here, the sum is taken over nearest neighbors aind B,

0.30 — ! ! vicinity of the transition poin{h(t—«)) diverges algebra-
pinned ' no overhangs | overhangs . X
: i E ically, characterized by some exponemnt
020 | ! EE ] (h(t—°))~(H—=H)™7, )
@ | |
g : ‘ whereH . denotes the critical field observed in a system of
= L D, | et —ee—e—e e . . L .
a - go2r infinite extension. In a finite system with linear dimenslon
2 010l | E os |1 nooverhangs ] finite-size scaling is assumed. The corresponding scaling an-
= - | satz reads
S I AT € [0.0;0.9]
Y (h(t—)) =L fL[(H=HoL""], (6)
0.0 ! with f(x)~|x| Y for x— —. Note that(h(t—)) also di-

A 2l-A verges in any finite system which means tliét) should
nul diverge at a finite value ok*. The corresponding driving
FIG. 4. Interface velocity and its dependence on the driving fi€ld defines a size dependent critical fi¢#d(L) given by
field H for A/J=0.7. The depinning transition takes placetat [Hc(L) —Hc]LY"=x*. A scaling plot of the data according
=A. The inset shows interface velocities for different system sized0 EQ. (6) is shown in Fig. 5. The divergence bfx) occurs
L €{30,42 and ratiosA/J< 1. For reasons of clearness not all error atx*~2.5 showing that in a finite system the threshold field
bars are shown. is always shifted to fields larger théd, .
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FIG. 6. Dependence of the interface velocityon the driving
field H in the vicinity of the transition point. Approaching the criti-
cal fieldH, the system sizé is increased in order to avoid finite-
size effects. Fitting the data according to Eg). (solid line) yields
B=0.66+0.04, H.=(1.37£0.01)}J, andA=0.67+0.03.

FIG. 7. Dependence of the interface velocity on the driving field
for different temperatures, as indicated. The open symbols are from
Fig. 6. The vertical line denotes the critical field obtained at0.

IV. FINITE TEMPERATURES

The critical exponent of the correlation length parallel to  In this section we study the influence of finite tempera-
the interface is given by #~1.31+0.07 and the critical tures on the depinning transition. For0 the interface ve-
field turns out to beH.=(1.371=0.03)J. The value ofv locity does not vanish for finite driving fields since the en-
coincides with Ref[15], where an[100] interface in the ergy needed to overcome local energy barriers is provided by
self-affine growth regime corresponding in our caseAto thermal fluctuations at any finifé. This results in a rounded
>J has been investigated. This suggests that the behavior @epinning transition. The rounding can be seen in Fig. 7,
the correlation length at the depinning transition does nowhere interface velocities for different driving fields and
depend on the orientation of the interface in the RFIM. temperatures are presented. As expected, the rounding of the

In the following we consider the disorder averaged inter-transition increases with increasing temperature. Again, we
face velocityv=(dh/dt) above the transition point in the ensured that the interface velocities presented in this and the
limit of large times. This quantity can be interpreted as thefollowing figures correspond within negligible errors to those
order parameter of the depinning transition. Approaching @®f the thermodynamic limit.
continuous phase transition the order parameter vanishes in To analyze the thermal rounding of the depinning transi-

leading order according to tion quantitatively, we first note that the depinning transition
can be described in terms of a continuous nonequilibrium
V(H)=A(H—H,)". (7) phase transition. This is suggested by the divergence of the

correlation lengti{see determination aof and Fig. § and the

. N dependence of the interface velocity on the driving field near
The corresponding data are shown in Fig. 6. The prefator the transition pointFig. 6). In the standard theory of critical

IS a nonumyersal constant which can be. used to compare th‘:)%enomena a continuous phase transition is characterized by
results obtained at zero temperature with those presented

... .
the next section. Since in the vicinity of the depinning tran-Crltlcal exponentgsee, for instance, Rel20], and references
sition finite-size effects may become important, we calcu-

thereir). Beside 8 describing the field dependence of the
lated each interface velocity(H) in systems of different order parameter and character|_2|_ng th? divergence .Of the
: . L correlation length near the transition point, the rounding of a
linear extensiorl. For sufficiently largeL we observed no

L . . hase transition is characterized by the critical expordnt
significant dependence on the system size from which wi ' maanetic svstems. for instancé. and & determine the
concluded that the data shown in Fig. 6 correspond withinma ngtic e ugtion of’state We n%w aoplv this approach to
negligible errors to those of the limit—oo. As can be seen g q ' pply pp

o e i, e = s a0 v obam 0671 [ PG tarston oy sssunig i orcr et o
+0.03, B=0.66+ 0.04, andH = (1.37+0.01)J. 9 9 P

The values ofB and v obtained from our analysis coin- driving field,
cide within the error bars with those of the Edwards-
Wilkinson equation with quenched disorder d+2+1,
Bew= 2/3, andvgy=3/4. These values are obtained byean . ~1/a ; ;
expansion within a functional renormalization group schemd=h00Singh =T~ **T we obtain the scaling ansatz
(see Refs[1,16]). While the value of3gyy, is obtained to first
order ofe, there are arguments thag,y is exact in all orders V(T,H)=TYf [ (H-H)T Y8, 9
to € [1,17]. Taking this into account, our results suggest that
the depinning transition of a domain wall in the 3D RFIM with f{(x—0)=const. In particular, this equation corre-
with quenched disorder is in the same universality class asponds to the magnetic equation of sf@@]. From an equa-
the depinning transition of the corresponding Edwards+ion of motion of sliding charge density waves a scaling form
Wilkinson equation which also coincides with Reff$8,19.  corresponding to Eq(9) has been obtaine#]. Note that

V[T,H=HJ]=AV[ATTNH(H—-H)]. (8)
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15 ‘ : ‘ tities the data collapse also allows a determination of the
A=177 : prefactorA=f,(x—0) [see Eq.(7)] which turns out to be
| A=0.685+0.025.
i The values ofA, H., and 8 found for T>0 coincide

: | within sufficient accuracy with those values obtainedTat
=0. We have demonstrated that E¢®). and (10) are valid
confirming that the interface velocity is a generalized ho-
mogenous function in the vicinity of the transition pojit].
Thus, the influence of temperature on the depinning transi-
tion can be described within well-established concepts.

The knowledge ofg and & allows a test of the scaling
‘ relation =2+ 1/8 proposed by Tang and Stepand@2].
1.0 2.0 This scaling relation was shown to be fulfilled in the 2D
RFIM [10]. For B~0.67 the scaling relation suggests
~3.5 which is not supported by our results. On the other
hand, standard theory of critical phenomena predicts rela-
tions among critical exponents. For instance, combining the
Rushbrooke, the Widom, and the hyperscaling relation yields
in equilibrium physics

1o | H=(1375£0.01)J
B=0.630.07

-1/8
vT

$=2.3810.2

05 r

0.0 !
-2.0 -1.0

00
(H-H)T

FIG. 8. Dependence of the interface velocity Binfor given
values ofT. The data shown are identical to those in Fig. 7 Tor
>0 and rescaled according to E®).

contrary to Ref.[4] our ansatz which is based on E®)

yields no predictions on the values fBrand 6. dv
It has been shown previously that E®) is valid in the o= ——1. (1D
2D RFIM with quenched disordgd0]. We have tested this B

scaling ansatz in the present situation for the 3D RFIM with

the interface velocities shown in Fig. 7. As can be seen fron NiS scaling relation is valid in dimensionsbelow the up-
Fig. 8, the scaling ansatz leads to a data collapsegfor P€r critical dimensiord, due to the restriction of the hyper-
=0.63+0.07, §=2.38+0.2, andH = (1.375+0.01)J. Thus scaling relation tal<d.. We have tested the scaling relation
at H=H_, the influence of temperature on the interface ve-(11) with the numerically evaluated exponents at the depin-
locity can be described by a power law-T?. To support ning transition and found out that both the exponents in the
this value fors we can determing from a different scaling Present casé=3 as well as the exponents fd=2 (v;p

function obtained from Eq.(8) by choosing A=|H  ~1:0, B2p=0.33, andd,p=5.0; see Ref[10]) fulfill Eq.
—Hc|_1/aH1 (11) within the error bars. Unfortunately however, a firm

foundation of this scaling relation in the present situation for

V(TH) = (H—H)f [ (H—Hg) 5T, (10) nonequilibrium phase transitions is unknown.

. . . . . V. CONCLUSION
with f(x—0)=const. This ansatz is valid above the transi-

tion point and it is closely related to E¢P). It corresponds We investigated the motion of a driven interface in a mag-
to a different formulation of the magnetic equation of state.netic system with quenched disorder. To improve the effi-
Interface velocities rescaled according to Erf) are shown ciency of our numerics we applied antiperiodic boundary
in Fig. 9. One obtaing3=0.67+0.03, §=2.55+0.37, and  conditions. These boundary conditions allow to investigate
H.=(1.37+=0.05)0J. This result confirms within the error the interface motion on any time scale. At zero temperature a
bars the value o determined by Eq9). Beside these quan- depinning transition occurs at a finite driving field. We dis-
cussed the influence of overhangs and avalanches on this
1.4 ; ; ; transition. If the strength of disorder exceeds the coupling
A=177 constant, the interface motion is based on the existence of
overhangs. Under these circumstances the depinning transi-
1.2 1 tion can be characterized by critical exponents, both below
H=(1.37£0.01) J and above the critical threshold. Our results suggest that the
depinning transition of a domain wall in the 3D RFIM with
8 quenched disorder and the depinning transition of the corre-
sponding Edwards-Wilkinson equation are in the same uni-
versality class.
8 Different distributions of random numbers are possible
but so far we investigated interface motion only in the pres-
T T T T T T ence of uniformly distributed noise. The dependence of the
L interface motion on the particular choice of the disorder dis-
tribution like the bimodal or Gaussian distribution remains
an open question and further investigations are needed to
FIG. 9. Dependence of the interface velocity ®rfor given  Clarify this point.
values ofH. The data are rescaled according to Edf). The hori- Experimental investigations of domain wall motion in
zontal line marks the value @ which is given by Eq(7). magnetic systems take place at finite temperatures. Both in

p=0.67+0.03

8=2551+0.37

A=0.68510.025
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experimental investigations, for instance on ultrathin mag+threshold field the interface velocity vanishes with decreas-
netic film structureg9], and in our simulations it turns out ing temperature according to a power law characterized by
that the interface velocity does not vanish below the criticalan exponents. We have tested a scaling relatifiqg. (11)]
threshold due to thermal fluctuations. In REF] creep mo-  among different exponents characterizing the depinning tran-
tion was analyzed which occurs fét<H. but we are not sjtion and found numerical evidence that the scaling relation
aware of experimental measurements very close to the critis valid both in the 2D and the 3D RFIM.

cal fieldH.. Measurements which allow an estimation of the

universality class of the depinning transition are possible

(see, e.g., Ref.23] where the roughness exponent of a do- ACKNOWLEDGMENTS
main wall in CoPt is analyzedand future work in this con-
text is desirable. This work was supported by the Deutsche Forschungsge-

We assume the interface velocity to be a generalized haneinschaft through the Graduiertenkoll8¢ruktur und Dy-
mogenous function of temperature and driving field. The vanamik heterogener Systena¢ the University of Duisburg,
lidity of this approach is confirmed by the fact that at the Germany.
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