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Depinning transition and thermal fluctuations in the random-field Ising model

L. Roters,* A. Hucht,† S. Lübeck,‡ U. Nowak,§ and K. D. Usadeli

Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, 47048 Duisburg, Germany
~Received 20 May 1999!

We analyze the depinning transition of a driven interface in the three-dimensional~3D! random field Ising
model~RFIM! with quenched disorder by means of Monte Carlo simulations. The interface initially built into
the system is perpendicular to the@111# direction of a simple cubic lattice. We introduce an algorithm which
is capable of simulating such an interface independent of the considered dimension and time scale. This
algorithm is applied to the 3D RFIM to study both the depinning transition and the influence of thermal
fluctuations on this transition. It turns out that in the RFIM characteristics of the depinning transition depend
crucially on the existence of overhangs. Our analysis yields critical exponents of the interface velocity, the
correlation length, and the thermal rounding of the transition. We find numerical evidence for a scaling relation
for these exponents and the dimensiond of the system.@S1063-651X~99!03011-1#

PACS number~s!: 68.35.Rh, 75.10.Hk, 75.40.Mg
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I. INTRODUCTION

Driven interfaces in systems with quenched disorder d
play with increasing driving force a transition from a pha
where no interface motion takes place to a phase with a fi
interface velocity. This so-called depinning transition
caused by a competition of driving force and quenched
order. While the driving force tends to move the interfa
the motion is hindered by the disorder~see, e.g., Ref.@1#!.

Depinning transitions are found in a large variety
physical problems, such as fluid invasion in porous me
@2#, depinning of charge density waves@3,4# or field-driven
motion of domain walls in ferromagnets@5#. In magnetic
systems a domain wall separates regions of different s
orientations. With the assumption that the corresponding
terface shows properties of an elastic membrane, it has b
argued@5# that the depinning of the interface can be d
scribed by an Edwards-Wilkinson equation@6# with
quenched disorder. While the interface motion in a syst
with quenched disorder near the critical threshold is theor
cally often investigated in the absence of thermal fluct
tions, these fluctuations affect the experimental study of
depinning transition@7–9#. The crucial point is that energ
barriers which are responsible for a trapping of the interf
in a metastable state at zero temperature can always be
come due to thermal fluctuations. For driving fields far b
low the transition field this yields a thermally activated cre
motion ~see Ref.@9#, and references therein!. This behavior
changes approaching the transition point, where finite te
peratures cause a rounded depinning transition~for experi-
mental evidence see, for instance, Fig. 2 in@9#!. To describe
the dependence of the interface velocity on driving force a
temperature near the transition point, a scaling ansatz
been proposed@4#. This ansatz which is based on an equat
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of motion for sliding charge density waves predicts its ch
acteristic velocity to be a power law of temperature at
critical threshold. This scaling ansatz has been shown to
valid description for the depinning of a domain wall in th
2D random field Ising model~RFIM! with quenched disorde
@10#.

The outline of our paper is as follows. Section II describ
the RFIM and reflects properties of@111# interfaces in this
model. In Sec. III we discuss the depinning transition from
microscopic point of view, analyzing the mechanisms of
terface motion near the depinning transition. Also, we de
mine numerically the exponents of the interface velocity a
of the correlation length, allowing an estimation of the un
versality class of the 3D RFIM. In Sec. IV we analyze t
influence of temperature on the depinning transition. By
suming the interface velocity to be a generalized hom
enous function, our analysis is based on applying stand
concepts of critical equilibrium phenomena. The ansatz
lows the characterization of the thermal rounding of the
pinning transition by a critical exponentd. We determined
for the depinning transition in the 3D RFIM and find nume
cal evidence for a scaling relation among certain critical
ponents characterizing this transition. This scaling relat
also holds in the 2D RFIM analyzed previously@10#.

II. INTERFACES IN THE RFIM

We investigate the 3D RFIM with quenched disorder on
simple cubic lattice. The Hamiltonian of the system is giv
by

H52
J

2 (
^ i , j &

SiSj2H(
i

Si2(
i

hiSi , ~1!

where the first sum is restricted to nearest neighbors.H de-
notes the driving field andhi quenched random fields whic
are uniformly distributed within an interval@2D,D#. Both
fields as well as the temperatureT are given in units of the
coupling constantJ. We carry out Monte Carlo simulation
with single-spin-flip dynamics and we use transition pro
abilities p(Si→2Si ,T), where T denotes the temperature
5202 © 1999 The American Physical Society
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PRE 60 5203DEPINNING TRANSITION AND THERMAL . . .
according to a heat-bath-Algorithm~see e.g., Ref.@11#, and
references therein!. At zero temperature these transitio
probabilities reduce to

p~Si→2Si ,0!5H 1:dH,0,

1/2:dH50,

0:dH.0,

~2!

where dH5H(2Si)2H(Si). We investigate three
dimensional cubic systems of linear extension fromL512 to
L5162.

An initially flat interface is built into the system separa
ing regions of up and down spins. The applied fieldH drives
the interface. Within the Monte Carlo simulation spins ad
cent to the interface flip causing a movement of the interfa
Also, nucleation may occur, i.e., a spin initially parallel to a
of its neighbors may turn. Since we are interested in
scaling behavior of the interface motion in the vicinity of th
depinning transition, it is essential that within the obser
tion time nucleation does not occur. The minimum ene
needed for isolated spin flips is 2(zJ2H2D). As long as
this quantity is large as compared to temperature, the t
scales on which nucleation and interface motion occur
separated, and within the observation time no nuclea
takes place@10#. In particular, there is no need to suppre
artificially nucleation or isolated spin flips during the sim
lation.

The analysis of interface motion on simple cubic lattic
considers usually@100# interfaces. However, investigatin
@100#-interfaces in the limit of vanishing disorder means th
the interface motion is restricted to driving fieldsH/J.z
22 ~see Ref.@12#!. To avoid this, we consider@111# inter-
faces which move in the absence of disorder at arbitra
small driving fields increasing the separation of time sca
for interface motion and nucleation even further@10#.

We have found that the most convenient way to imp
ment @111# interfaces in the numerics is the introduction
antiperiodic boundary conditions. This implementation is
lustrated in Fig. 1. For simplicity, periodic images of a sna
shot of an interface ind52 are shown. As can be seen fro
Fig. 1, the orientations of up and down are exchanged w
passing the boundaries of the system. Of course, the
change of up and down also affects the driving field who

FIG. 1. Periodic images of a moving interface ind52. Antipe-
riodic boundary conditions are applied. Black areas correspon
Si,0 and white areas toSi.0.
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sign has to be chosen in an appropriate manner. Our im
mentation will work as long as the different parts of th
interface do not interact. An interaction takes place if t
interface widthw;Lz is of the same magnitude as the typ
cal distancea between two neighboring parts of the interfac
This distance is proportional to the linear extension of
systema}L independent of the considered dimension. O
implementation is therefore applicable to situations wherz
,1. Despite this restriction antiperiodic boundary conditio
have the advantages that they can be applied to any dim
sion and generalized to other orientations of the interfa
They are a natural choice for interfaces, because the mo
interface can be investigated without any time limit. This
especially an advantage close to the depinning transit
where the critical slowing down effect causes large rel
ation times@13#.

In our implementation the moving interface visits th
same spatial position after finite time intervals. Therefo
we have to update the random fields in a spatial area vis
by the interface before it moves again into this area. This
easily done by drawing new random fields at sites away fr
the interface. Thus, the average over samples necessa
Monte Carlo simulations is obtained by averaging over la
times. However, if the interface is trapped a usual sam
average has to be done.

III. ZERO TEMPERATURE

In the RFIM with an interface initially built into the sys
tem, there are in general two magnetization reversal p
cesses: interface motion and nucleation. Without therm
fluctuations the second process does not occur as lon
(H1D)/J does not exceed the numberz of nearest neigh-
bors. The corresponding threshold is shown in Fig. 2~upper
broken curve!. Above this threshold nucleation process
take place and interfere with the interface motion.

In the following we are interested in the influence of ove
hangs on the value of the critical fieldHc(D) at which the
transition takes place. Close to the depinning transition, th

to FIG. 2. Dependence of magnetization reversal processes on
tem parameters in the RFIM atT50. The dimension enters only
through the numberz of nearest neighbors. The bold line indicat
the dependence of the critical fieldHc on the strength of the disor
derD. ForD,J the critical field equalsD, while for D.J the bold
line is only a sketch. The dashed lines indicate the regions wh
overhangs and island growth appear.
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5204 PRE 60ROTERS, HUCHT, LÜBECK, NOWAK, AND USADEL
are two important kinds of spin flips~see Fig. 3!. All spins of
type A with

(̂
j &

SASj50 will flip if H>H05D, ~3!

while the first spin of typeB with

(̂
j &

SBSj522 can flip if H>H2252J2D. ~4!

Here, the sum is taken over nearest neighbors ofA and B,
respectively. If the strength of disorderD is smaller than the
exchange energyJ, then it follows thatH0,H22. The criti-
cal field at which the transition takes place is given
Hc(D,J)5D. Hence, no overhangs occur in the vicinity
the transition point. Taking into account the transition pro
abilities given by Eq.~2!, this value of the critical field
means that the interface velocity depends neither on the d
ing field nor on the strength of disorder as long as no ov
hangs occur (H,H22). In particular, in the absence of ove
hangs the interface velocity observed in a disordered sys
coincides with that of a nondisordered system (D50). Fig-
ure 4 and its inset show numerical data which confirm t
scenario for the 3D RFIM within the error bars.

Next we investigate the depinning transition occurring
the RFIM for D.J. In this case the transition takes place
a certain fieldHc,D as can be understood from the follow
ing consideration: ForH0,H22, not all spins of typeA can

FIG. 3. Part of a diagonal interface ind52. Different orienta-
tions of the spinsSi are denoted by black circles~favored by the
driving field! and white circles, respectively. To cause a spin flip
the A, B sites, different driving fields are necessary~see text!.

FIG. 4. Interface velocityv and its dependence on the drivin
field H for D/J50.7. The depinning transition takes place atH
5D. The inset shows interface velocities for different system si
LP$30,42% and ratiosD/J,1. For reasons of clearness not all err
bars are shown.
-
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flip if H,D. But because of the existence of overhangs
second growth mechanism is possible to the interface:
spin of typeA cannot flip due to its large random fieldhi , an
overhang created elsewhere can cause an avalanche by w
additional neighbors ofA are flipped. Thus the interface ca
be kept moving. Contrary to the regimeD,J, the interface
motion now is based on the existence of overhangs. Note
our considerations do not depend on the dimensiond of the
system, because Eqs.~3! and ~4! are independent ofd.

We start examining the regimeD.J in the 3D RFIM
numerically by investigating the depinning transition fro
below. We analyze the disorder-averaged distance^h(t
→`)& traveled by an initially flat interface before pinnin
occurs. This quantity is closely related to the total volum
invaded by a growing domain which was analyzed in Re
@14,15#. However, while in Refs.@14,15# the driving force is
increased step by step to allow for relaxation processe
between, we focus our attention to driving fields which r
main unchanged during the interface motion.

Below the depinning transition̂h(t→`)& is finite. Ap-
proaching the transition point with increasing driving fiel
the distance traveled before pinning occurs increases an
nally diverges at the transition point. We assume that in
vicinity of the transition point̂ h(t→`)& diverges algebra-
ically, characterized by some exponenty,

^h~ t→`!&;~Hc2H !2y, ~5!

whereHc denotes the critical field observed in a system
infinite extension. In a finite system with linear dimensionL
finite-size scaling is assumed. The corresponding scaling
satz reads

^h~ t→`!&5Ly/n f @~H2Hc!L
1/n#, ~6!

with f (x);uxu2y for x→2`. Note that^h(t→`)& also di-
verges in any finite system which means thatf (x) should
diverge at a finite value ofx!. The corresponding driving
field defines a size dependent critical fieldHc(L) given by
@Hc(L)2Hc#L

1/n5x!. A scaling plot of the data accordin
to Eq. ~6! is shown in Fig. 5. The divergence off (x) occurs
at x!'2.5 showing that in a finite system the threshold fie
is always shifted to fields larger thatHc .

t

s

FIG. 5. Scaling plot of the distancêh(t→`)& traveled by the
interface before pinning occurs as a function of the driving fieldH
according to Eq.~6!. The data collapse yields 1/n51.3160.07,
y/n50.9860.4, andHc5(1.37160.003)J.
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PRE 60 5205DEPINNING TRANSITION AND THERMAL . . .
The critical exponent of the correlation length parallel
the interface is given by 1/n51.3160.07 and the critical
field turns out to beHc5(1.37160.03)J. The value ofn
coincides with Ref.@15#, where an@100# interface in the
self-affine growth regime corresponding in our case toD
.J has been investigated. This suggests that the behavi
the correlation length at the depinning transition does
depend on the orientation of the interface in the RFIM.

In the following we consider the disorder averaged int
face velocityv5^dh/dt& above the transition point in th
limit of large times. This quantity can be interpreted as
order parameter of the depinning transition. Approachin
continuous phase transition the order parameter vanishe
leading order according to

v~H !5A~H2Hc!
b. ~7!

The corresponding data are shown in Fig. 6. The prefactoA
is a nonuniversal constant which can be used to compare
results obtained at zero temperature with those presente
the next section. Since in the vicinity of the depinning tra
sition finite-size effects may become important, we cal
lated each interface velocityv(H) in systems of different
linear extensionL. For sufficiently largeL we observed no
significant dependence on the system size from which
concluded that the data shown in Fig. 6 correspond wit
negligible errors to those of the limitL→`. As can be seen
from the data, Eq.~7! is fulfilled and we obtainA50.671
60.03, b50.6660.04, andHc5(1.3760.01)J.

The values ofb and n obtained from our analysis coin
cide within the error bars with those of the Edward
Wilkinson equation with quenched disorder ind5211,
bEW52/3, andnEW53/4. These values are obtained by ane
expansion within a functional renormalization group sche
~see Refs.@1,16#!. While the value ofbEW is obtained to first
order ofe, there are arguments thatnEW is exact in all orders
to e @1,17#. Taking this into account, our results suggest t
the depinning transition of a domain wall in the 3D RFI
with quenched disorder is in the same universality class
the depinning transition of the corresponding Edwar
Wilkinson equation which also coincides with Refs.@18,19#.

FIG. 6. Dependence of the interface velocityv on the driving
field H in the vicinity of the transition point. Approaching the crit
cal fieldHc , the system sizeL is increased in order to avoid finite
size effects. Fitting the data according to Eq.~7! ~solid line! yields
b50.6660.04, Hc5(1.3760.01)J, andA50.6760.03.
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IV. FINITE TEMPERATURES

In this section we study the influence of finite tempe
tures on the depinning transition. ForT.0 the interface ve-
locity does not vanish for finite driving fields since the e
ergy needed to overcome local energy barriers is provided
thermal fluctuations at any finiteT. This results in a rounded
depinning transition. The rounding can be seen in Fig.
where interface velocities for different driving fields an
temperatures are presented. As expected, the rounding o
transition increases with increasing temperature. Again,
ensured that the interface velocities presented in this and
following figures correspond within negligible errors to tho
of the thermodynamic limit.

To analyze the thermal rounding of the depinning tran
tion quantitatively, we first note that the depinning transiti
can be described in terms of a continuous nonequilibri
phase transition. This is suggested by the divergence of
correlation length~see determination ofn and Fig. 5! and the
dependence of the interface velocity on the driving field n
the transition point~Fig. 6!. In the standard theory of critica
phenomena a continuous phase transition is characterize
critical exponents~see, for instance, Ref.@20#, and references
therein!. Besideb describing the field dependence of th
order parameter andn characterizing the divergence of th
correlation length near the transition point, the rounding o
phase transition is characterized by the critical exponend.
In magnetic systems, for instance,b and d determine the
magnetic equation of state. We now apply this approach
the depinning transition by assuming its order paramete
be a generalized homogenous function of temperature
driving field,

v@T,H2Hc#5lv@laTT,laH~H2Hc!#. ~8!

Choosingl5T21/aT we obtain the scaling ansatz

v~T,H !5T1/d f T@~H2Hc!T
21/bd#, ~9!

with f T(x→0)5const. In particular, this equation corre
sponds to the magnetic equation of state@20#. From an equa-
tion of motion of sliding charge density waves a scaling fo
corresponding to Eq.~9! has been obtained@4#. Note that

FIG. 7. Dependence of the interface velocity on the driving fie
for different temperatures, as indicated. The open symbols are f
Fig. 6. The vertical line denotes the critical field obtained atT50.
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5206 PRE 60ROTERS, HUCHT, LÜBECK, NOWAK, AND USADEL
contrary to Ref.@4# our ansatz which is based on Eq.~8!
yields no predictions on the values forb andd.

It has been shown previously that Eq.~9! is valid in the
2D RFIM with quenched disorder@10#. We have tested this
scaling ansatz in the present situation for the 3D RFIM w
the interface velocities shown in Fig. 7. As can be seen fr
Fig. 8, the scaling ansatz leads to a data collapse fob
50.6360.07, d52.3860.2, andHc5(1.37560.01)J. Thus
at H5Hc the influence of temperature on the interface v
locity can be described by a power lawv;T1/d. To support
this value ford we can determined from a different scaling
function obtained from Eq. ~8! by choosing l5uH
2Hcu21/aH:

v~T,H !5~H2Hc!
b f H@~H2Hc!

2bdT#, ~10!

with f H(x→0)5const. This ansatz is valid above the tran
tion point and it is closely related to Eq.~9!. It corresponds
to a different formulation of the magnetic equation of sta
Interface velocities rescaled according to Eq.~10! are shown
in Fig. 9. One obtainsb50.6760.03, d52.5560.37, and
Hc5(1.3760.05)J. This result confirms within the erro
bars the value ofd determined by Eq.~9!. Beside these quan

FIG. 8. Dependence of the interface velocity onH for given
values ofT. The data shown are identical to those in Fig. 7 forT
.0 and rescaled according to Eq.~9!.

FIG. 9. Dependence of the interface velocity onT for given
values ofH. The data are rescaled according to Eq.~10!. The hori-
zontal line marks the value ofA which is given by Eq.~7!.
-

-

.

tities the data collapse also allows a determination of
prefactorA5 f H(x→0) @see Eq.~7!# which turns out to be
A50.68560.025.

The values ofA, Hc , and b found for T.0 coincide
within sufficient accuracy with those values obtained atT
50. We have demonstrated that Eqs.~9! and ~10! are valid
confirming that the interface velocity is a generalized h
mogenous function in the vicinity of the transition point@21#.
Thus, the influence of temperature on the depinning tra
tion can be described within well-established concepts.

The knowledge ofb and d allows a test of the scaling
relation d5211/b proposed by Tang and Stepanow@22#.
This scaling relation was shown to be fulfilled in the 2
RFIM @10#. For b'0.67 the scaling relation suggestsd
'3.5 which is not supported by our results. On the oth
hand, standard theory of critical phenomena predicts r
tions among critical exponents. For instance, combining
Rushbrooke, the Widom, and the hyperscaling relation yie
in equilibrium physics

d5
dn

b
21. ~11!

This scaling relation is valid in dimensionsd below the up-
per critical dimensiondc due to the restriction of the hyper
scaling relation tod,dc . We have tested the scaling relatio
~11! with the numerically evaluated exponents at the dep
ning transition and found out that both the exponents in
present cased53 as well as the exponents ford52 (n2D
'1.0, b2D'0.33, andd2D'5.0; see Ref.@10#! fulfill Eq.
~11! within the error bars. Unfortunately however, a fir
foundation of this scaling relation in the present situation
nonequilibrium phase transitions is unknown.

V. CONCLUSION

We investigated the motion of a driven interface in a ma
netic system with quenched disorder. To improve the e
ciency of our numerics we applied antiperiodic bounda
conditions. These boundary conditions allow to investig
the interface motion on any time scale. At zero temperatu
depinning transition occurs at a finite driving field. We di
cussed the influence of overhangs and avalanches on
transition. If the strength of disorder exceeds the coupl
constant, the interface motion is based on the existenc
overhangs. Under these circumstances the depinning tra
tion can be characterized by critical exponents, both be
and above the critical threshold. Our results suggest that
depinning transition of a domain wall in the 3D RFIM wit
quenched disorder and the depinning transition of the co
sponding Edwards-Wilkinson equation are in the same u
versality class.

Different distributions of random numbers are possib
but so far we investigated interface motion only in the pr
ence of uniformly distributed noise. The dependence of
interface motion on the particular choice of the disorder d
tribution like the bimodal or Gaussian distribution remai
an open question and further investigations are neede
clarify this point.

Experimental investigations of domain wall motion
magnetic systems take place at finite temperatures. Bot
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PRE 60 5207DEPINNING TRANSITION AND THERMAL . . .
experimental investigations, for instance on ultrathin m
netic film structures@9#, and in our simulations it turns ou
that the interface velocity does not vanish below the criti
threshold due to thermal fluctuations. In Ref.@9# creep mo-
tion was analyzed which occurs forH!Hc but we are not
aware of experimental measurements very close to the c
cal fieldHc . Measurements which allow an estimation of t
universality class of the depinning transition are possi
~see, e.g., Ref.@23# where the roughness exponent of a d
main wall in CoPt is analyzed! and future work in this con-
text is desirable.

We assume the interface velocity to be a generalized
mogenous function of temperature and driving field. The
lidity of this approach is confirmed by the fact that at t
ng
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threshold field the interface velocity vanishes with decre
ing temperature according to a power law characterized
an exponentd. We have tested a scaling relation@Eq. ~11!#
among different exponents characterizing the depinning tr
sition and found numerical evidence that the scaling relat
is valid both in the 2D and the 3D RFIM.
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